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01 Motivation

The load imbalance problem in key-value stores
• Key-value stores are widely deployed in modern 

data centers.

• Key-value stores face a key challenge posed by 

skewed dynamic workloads, which can lead to load 

imbalances. 
• Facebook: 10% of objects account for 60%~90% of 

requests.

• Alibaba: The Zipfian parameter reaches 0.9~0.99 in 

daily scenarios and 1~1.22 in extreme cases.
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A novel network hardware —— programmable switch
• Programmable switches utilize programmable acceleration chips to support user-

defined network protocols and packet forwarding logic.

• Current programmable switches contain multiple ingress and egress pipelines.

• A single pipeline consists of multiple stages.
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Two advantages of the programmable switch

processes network packets 
in the transfer path between 
clients and storage servers.

Position:

enables line-rate packet 
forwarding with throughput 
on the order of Tbps.

Performance:
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Existing methods’ limitations

NetCache / FarReach: caches hot objects 

directly in programmable switches
• The size of object values cannot exceed 

128 B.

• NetCache does not support write caching.

• FarReach supports write caching but needs 

complex measures to handle switch failure.

Pegasus: ransfers the directory of selective 

replication to programmable switches
• The size of object values cannnot exceed 

MTU.

• Directing all requests to storage servers results 

in longer access paths.

• A complex chain replication protocol is required 

to prevent data inconsistency caused by switch 

failure.
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Real workloads analysis
• Twitter: the top 1% hot objects in 54 workloads of different clusters

• 35 workloads contain hot objects >128B.

• 18 workloads contain hot objects >1500 B (Ethernet MTU).

• 10 workloads contain hot objects >9000 B (jumbo frame max).

• 25 workloads show median hot object sizes >128 B.

• 16 workloads include read-modify-write requests (not supported by previous work).

• Facebook: the top 1% hot objects in October 2022 sampled workloads
• 19.35% of top 1% hot objects exceed 128B, yet they generate 86.99% of network traffic.
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Request collision analysis
• processing latency: refers to the time interval between a switch receiving a request 

and its corresponding reply.

• request collision: occurs when the processing latency periods of requests for the 

same object overlap.

keyspace: 250 M, system-wide throughput: 100 MRPS

α: Zipfian parameter, L: processing latency

The weighted probability 
of request collisions for 
the top 65536 objects.
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Comparison of Different Methods

CableCache’s core idea: Maintaining an object request information directory in 

the programmable switch to avoid repeated requests for hot objects.



02 System Design 

Packet flow
• CableCache separates the deduplication processing of read and write requests.

• The first read request R1 will be recorded in the switch and sent to the storage server.

• The read request R2 and R3 will be recorded and then dropped.

• The write packet flow is similar.
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Packet header format
• We propose the In-Network Request Deduplication (INRD) protocol, an application-

layer protocol using a specific UDP source port.
• n_id: the target node ID

• c_map: the one-hot encoding of the client ID

• t_map: the one-hot encoding o the thread ID

• op: the operation type (e.g. read request, read reply, write request, write reply)



02 System Design 

Packet header format
• We propose the In-Network Request Deduplication (INRD) protocol, an application-

layer protocol using a specific UDP source port.
• key: the target key (fixed length, 32 bits)

• idx: the record index within the switch (hash the 32-bit key to 16 bits)

• flag: “0”: direct forwarding; “1”: executing deduplication logic (client default value)

• multi-packet related fields: to handle multi-packet objects’ requests
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Switch request processing
• index checking engine: state register array + key register array

• If the state register value is “0”, set the state register to “1”, set the key register to the key 

field value, and mark the request as “first request”.

• If the state register value is “1”, when the key register value mismatches the key field, set 

the flag field to “0” and forward the request packet directly.
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Switch request processing
• request recording engine: client bitmap register array + thread bitmap register array

• The client bitmap register and the corresponding thread bitmap register are updated with 

the c_map and t_map fields using the bitwise OR operation.

• If the request is marked as “first request”, forward it to the storage server.

• If the request is not marked as “first request”, drop it directly.

• forwarding engine: set forwarding information for the packet
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Complex scenario #1: read-modify-write request
• CableCache integrates RMW requests into 

the write request deduplication module.

• RMW requests can’t be marked as “first 

request” to guarantee linearizability.

• The switch will set the flag field to “0” and 

directly forward the RMW request M1.

• The first write request W2 will be recorded in 

the switch and sent to the storage server.

• The RMW request M3 will be recorded and 

then dropped.
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Complex scenario #2: multi-packet object
• CableCache employs a compensatory read mechanism to handle multi-packet 

objects’ read requests.

• The switch maintains a pkt_map register array and an obj_ver register array, 

representing received reply packet IDs’ bitmap and the object version number.
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Complex scenario #2: multi-packet object
• When the non-first read request arrives, if the pkt_map register value is “0”, the request 

will be recorded and dropped (e.g., R2). 

• Otherwise, the pkt_map and obj_ver registers will be set, and the flag field will be set to 

“2”, which means the compensatory read mechanism should be used (e.g., R3). 
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Complex scenario #2: multi-packet object
• The storage server checks whether its recorded object version number is ahead of the 

packet’s obj_ver field.

• If not, the server only returns the reply packets indicated by the pkt_map field.

• Otherwise, the server must return all reply packets.
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Discussion #1: variable-length key
• The variable-length key needs to be mapped to 32 bits using a hash function.

• The original key must be included after the header.

• If a client receives the reply packet mismatching its target key, it should resend the 

request while bypassing the request deduplication logic.

Discussion #2: packet loss
• A timeout mechanism can be used by clients to address packet loss issues.

• A timestamp checking mechanism can be introduced to prevent the issue of record 

indexes being continuously occupied.
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Methodology
• Testbed

• 6 hosts are connected by a Barefoot Tofino Wedge 100BF-32X switch.

• 4 hosts act as clients, each running 12 threads. 

• 2 hosts each run 12 threads to simulate 24 storage servers.

• Default workload
• keyspace: 100 MB, Zipfian parameter: 0.99

• ​proportion of request types​: 90% (read) : 8% (write) : 2% (CAS) 

• Default configuration
• MTU: 1092 B, storage backend: Redis, cache record count: 65536

• object value size: 512 B (single-packet) and 4096 B (multi-packet)

• coroutine count per client thread: 16
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Throughput analysis
• The increase ratio of throughput grows significantly as the workload skew intensifies.

• Higher workload skew exacerbates load imbalance across storage servers, leading to 

more frequent request collisions.
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Throughput analysis
• The figure presents the load distribution across different storage servers, sorted in 

descending order.

• CableCache significantly improves load balancing across storage servers.
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Latency analysis
• The number of concurrent requests equals to the number of coroutines per thread.

• CableCache can mitigate tail latency escalation caused by higher concurrency levels 

effectively.
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Handling small objects
• Employ a read-only workload to conduct a 

comparison between CableCache and 

NetCache.

• NetCache enables the majority of small 

objects to be cached within switches.

• CableCache still requires forwarding most 

requests to storage servers, resulting in a 

lower increase ratio of throughput.
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Handling real workloads
• Select Trace033 (average value size: 1118 B) and Trace053 (average value size: 

9213 B) from two different clusters in Twitter’s workload.

• CableCache improves system-wide throughput and reduces the P99 latency 

effectively under real workloads.



04 Conclusion

CableCache: an in-network request deduplication system 
• Leverages programmable switches to maintain a directory of object request information.

• Introduces the INRD protocol to deduplicate hot object requests.

• Effectively handles complex scenarios such as the presence of read-modify-write 

requests and multi-packet target objects.

Experimental results show CableCache’s effectiveness
• Alleviates load imbalance under both synthetic and real workloads.

• Improves system-wide throughput, and reduces tail latency of requests.
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