
CableCache: In-Network Request 
Deduplication for Key-Value Stores

Jiawei Huang1, Junru Li1, Qing Wang1, Lijie Wen1, Youyou Lu1, Erci Xu2

1Tsinghua University; 2SJTU



Motivation01

System Design02

Evaluation03

Contents

Conclusion04



01 Motivation

The load imbalance problem in key-value stores
• Key-value stores are widely deployed in modern 

data centers.

• Key-value stores face a key challenge posed by 

skewed dynamic workloads, which can lead to load 

imbalances. 
• Facebook: 10% of objects account for 60%~90% of 

requests.

• Alibaba: The Zipfian parameter reaches 0.9~0.99 in 

daily scenarios and 1~1.22 in extreme cases.



01 Motivation

A novel network hardware —— programmable switch
• Programmable switches utilize programmable acceleration chips to support user-

defined network protocols and packet forwarding logic.

• Current programmable switches contain multiple ingress and egress pipelines.

• A single pipeline consists of multiple stages.



01 Motivation

Two advantages of the programmable switch

processes network packets 
in the transfer path between 
clients and storage servers.

Position:

enables line-rate packet 
forwarding with throughput 
on the order of Tbps.

Performance:



01 Motivation

Existing methods’ limitations

NetCache / FarReach: caches hot objects 

directly in programmable switches
• The size of object values cannot exceed 

128 B.

• NetCache does not support write caching.

• FarReach supports write caching but needs 

complex measures to handle switch failure.

Pegasus: ransfers the directory of selective 

replication to programmable switches
• The size of object values cannnot exceed 

MTU.

• Directing all requests to storage servers results 

in longer access paths.

• A complex chain replication protocol is required 

to prevent data inconsistency caused by switch 

failure.



01 Motivation

Real workloads analysis
• Twitter: the top 1% hot objects in 54 workloads of different clusters

• 35 workloads contain hot objects >128B.

• 18 workloads contain hot objects >1500 B (Ethernet MTU).

• 10 workloads contain hot objects >9000 B (jumbo frame max).

• 25 workloads show median hot object sizes >128 B.

• 16 workloads include read-modify-write requests (not supported by previous work).

• Facebook: the top 1% hot objects in October 2022 sampled workloads
• 19.35% of top 1% hot objects exceed 128B, yet they generate 86.99% of network traffic.



01 Motivation

Request collision analysis
• processing latency: refers to the time interval between a switch receiving a request 

and its corresponding reply.

• request collision: occurs when the processing latency periods of requests for the 

same object overlap.

keyspace: 250 M, system-wide throughput: 100 MRPS

α: Zipfian parameter, L: processing latency

The weighted probability 
of request collisions for 
the top 65536 objects.



01 Motivation

Comparison of Different Methods

CableCache’s core idea: Maintaining an object request information directory in 

the programmable switch to avoid repeated requests for hot objects.



02 System Design 

Packet flow
• CableCache separates the deduplication processing of read and write requests.

• The first read request R1 will be recorded in the switch and sent to the storage server.

• The read request R2 and R3 will be recorded and then dropped.

• The write packet flow is similar.



02 System Design 

Packet header format
• We propose the In-Network Request Deduplication (INRD) protocol, an application-

layer protocol using a specific UDP source port.
• n_id: the target node ID

• c_map: the one-hot encoding of the client ID

• t_map: the one-hot encoding o the thread ID

• op: the operation type (e.g. read request, read reply, write request, write reply)



02 System Design 

Packet header format
• We propose the In-Network Request Deduplication (INRD) protocol, an application-

layer protocol using a specific UDP source port.
• key: the target key (fixed length, 32 bits)

• idx: the record index within the switch (hash the 32-bit key to 16 bits)

• flag: “0”: direct forwarding; “1”: executing deduplication logic (client default value)

• multi-packet related fields: to handle multi-packet objects’ requests



02 System Design 

Switch request processing
• index checking engine: state register array + key register array

• If the state register value is “0”, set the state register to “1”, set the key register to the key 

field value, and mark the request as “first request”.

• If the state register value is “1”, when the key register value mismatches the key field, set 

the flag field to “0” and forward the request packet directly.



02 System Design 

Switch request processing
• request recording engine: client bitmap register array + thread bitmap register array

• The client bitmap register and the corresponding thread bitmap register are updated with 

the c_map and t_map fields using the bitwise OR operation.

• If the request is marked as “first request”, forward it to the storage server.

• If the request is not marked as “first request”, drop it directly.

• forwarding engine: set forwarding information for the packet



02 System Design 

Complex scenario #1: read-modify-write request
• CableCache integrates RMW requests into 

the write request deduplication module.

• RMW requests can’t be marked as “first 

request” to guarantee linearizability.

• The switch will set the flag field to “0” and 

directly forward the RMW request M1.

• The first write request W2 will be recorded in 

the switch and sent to the storage server.

• The RMW request M3 will be recorded and 

then dropped.



02 System Design 

Complex scenario #2: multi-packet object
• CableCache employs a compensatory read mechanism to handle multi-packet 

objects’ read requests.

• The switch maintains a pkt_map register array and an obj_ver register array, 

representing received reply packet IDs’ bitmap and the object version number.



02 System Design 

Complex scenario #2: multi-packet object
• When the non-first read request arrives, if the pkt_map register value is “0”, the request 

will be recorded and dropped (e.g., R2). 

• Otherwise, the pkt_map and obj_ver registers will be set, and the flag field will be set to 

“2”, which means the compensatory read mechanism should be used (e.g., R3). 



02 System Design 

Complex scenario #2: multi-packet object
• The storage server checks whether its recorded object version number is ahead of the 

packet’s obj_ver field.

• If not, the server only returns the reply packets indicated by the pkt_map field.

• Otherwise, the server must return all reply packets.



02 System Design 

Discussion #1: variable-length key
• The variable-length key needs to be mapped to 32 bits using a hash function.

• The original key must be included after the header.

• If a client receives the reply packet mismatching its target key, it should resend the 

request while bypassing the request deduplication logic.

Discussion #2: packet loss
• A timeout mechanism can be used by clients to address packet loss issues.

• A timestamp checking mechanism can be introduced to prevent the issue of record 

indexes being continuously occupied.



03 Evaluation

Methodology
• Testbed

• 6 hosts are connected by a Barefoot Tofino Wedge 100BF-32X switch.

• 4 hosts act as clients, each running 12 threads. 

• 2 hosts each run 12 threads to simulate 24 storage servers.

• Default workload
• keyspace: 100 MB, Zipfian parameter: 0.99

• proportion of request types: 90% (read) : 8% (write) : 2% (CAS) 

• Default configuration
• MTU: 1092 B, storage backend: Redis, cache record count: 65536

• object value size: 512 B (single-packet) and 4096 B (multi-packet)

• coroutine count per client thread: 16



03 Evaluation

Throughput analysis
• The increase ratio of throughput grows significantly as the workload skew intensifies.

• Higher workload skew exacerbates load imbalance across storage servers, leading to 

more frequent request collisions.



03 Evaluation

Throughput analysis
• The figure presents the load distribution across different storage servers, sorted in 

descending order.

• CableCache significantly improves load balancing across storage servers.



03 Evaluation

Latency analysis
• The number of concurrent requests equals to the number of coroutines per thread.

• CableCache can mitigate tail latency escalation caused by higher concurrency levels 

effectively.



03 Evaluation

Handling small objects
• Employ a read-only workload to conduct a 

comparison between CableCache and 

NetCache.

• NetCache enables the majority of small 

objects to be cached within switches.

• CableCache still requires forwarding most 

requests to storage servers, resulting in a 

lower increase ratio of throughput.



03 Evaluation

Handling real workloads
• Select Trace033 (average value size: 1118 B) and Trace053 (average value size: 

9213 B) from two different clusters in Twitter’s workload.

• CableCache improves system-wide throughput and reduces the P99 latency 

effectively under real workloads.



04 Conclusion

CableCache: an in-network request deduplication system 
• Leverages programmable switches to maintain a directory of object request information.

• Introduces the INRD protocol to deduplicate hot object requests.

• Effectively handles complex scenarios such as the presence of read-modify-write 

requests and multi-packet target objects.

Experimental results show CableCache’s effectiveness
• Alleviates load imbalance under both synthetic and real workloads.

• Improves system-wide throughput, and reduces tail latency of requests.



Thanks for Listening!
Q & A

Contact: huangjw22@mails.tsinghua.edu.cn


